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Abstract
First a set of coherent states à la Klauder is formally constructed for the
Coulomb problem in a curved space of constant positive curvature. Then the
flat-space limit is taken to reduce the set for the radial Coulomb problem to a
set of hydrogen atom coherent states corresponding to both the discrete and the
continuous portions of the spectrum for a fixed � sector.

PACS numbers: 03.65.−w, 02.30.Ik

1. Introduction

In [1], Klauder proposed a set of coherent states in relation with the bound state portion of
the hydrogen atom, generalizing the harmonic oscillator coherent states so as to preserve the
following three properties; they are (i) continuous in their parameters, (ii) admit a resolution
of unity and (iii) are temporally stable (i.e., evolve among themselves in time). In fact
there are a number of ways to generalize the harmonic oscillator coherent states [2, 3].
Most generalizations, notably Perelomov’s, are based on group structures. Klauder stipulates
coherent states without resort to a group.

The proposed coherent states with an energy spectrum En = ωen(n = 0, 1, 2, . . . ; e0 = 0)

are labelled by two real parameters s (0 � s < ∞) and γ (−∞ < γ < ∞) as

|s, γ 〉 = M(s2)

∞∑
n=0

sn e−iγ en

√
ρn

|n〉 (1)

where |n〉 is the eigenstate belonging to En and ρn is the nth moment of a probability distribution
function ρ(u) > 0,

ρn =
∫ ū

0
unρ(u) du. (2)
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For the harmonic oscillator, ρ(u) = e−u leads to the desirable result ρn = n!. However, in
general, the coherent states (1) as proposed by Klauder have ambiguity in the choice of ρ(u).
The normalization factor M(s2) is determined so as to satisfy 〈s, γ |s, γ 〉 = 1; namely,

M(s2)−2 =
∞∑

n=0

s2n

ρn

. (3)

With the Hamiltonian Ĥ such that Ĥ |n〉 = ωen|n〉, it is apparent that

e−iĤ t |s, γ 〉 = |s, γ + ωt〉 (4)

which is taken in [1] as the exhibition of temporal stability of the coherent states. The states
satisfy the resolution of unity,∫

dµ(s, γ )|s, γ 〉〈s, γ | = 1̂dis (5)

with a measure µ(s, γ ) defined by∫
dµ(s, γ )f (s, γ ) = lim

�→∞
1

2�

∫ ∞

0
k(s2) ds2

∫ �

−�

dγ f (s, γ ) (6)

provided that

lim
�→∞

1

2�

∫ �

−�

dγ eiγ (en−en′ ) = δn,n′ , (7)

that is, that all en are distinct (no degeneracies). In (6),

k(s2) = ρ(s2)/M(s2)2, (8)

which remains unspecified until the form of ρ(s2) in (2) is given. Gazeau and Klauder [4],
letting s2 = J , imposed an additional condition, called the action identity [4],

〈J, γ |Ĥ |J, γ 〉 = ωJ, (9)

which leads ρn to the form,

ρn =
n∏

j=1

ej , ρ0 = 1. (10)

This condition suggests one to interpret the parameter J as the classical action variable
conjugate to the angle variable γ . A remark will be made in section 4 concerning a possible
use of J for the semiclassical quantization condition.

Gazeau and Klauder [4] also proposed coherent states for continuum dynamics. For a
Hamiltonian with a non-degenerate continuous spectrum 0 < ωε < ωε̄, the proposed coherent
states take the form,

|s, γ 〉 = M(s2)

∫ ε̄

0

sε e−iγ ε

√
ρ(ε)

|ε〉 dε, (11)

where

M(s2)−2 =
∫ ε̄

0

s2ε

ρ(ε)
dε (12)

to meet 〈s, γ |s, γ 〉 = 1 for 0 � s < s̄. The function ρ(ε) in (11) is determined with an
appropriate non-negative weighting function σ(s) � 0 as

ρ(ε) =
∫ ε̄

0
s2εσ (s) ds. (13)
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These coherent states for a continuous spectrum evolve in time among themselves. With
dµ(s, γ ) = (1/2π)M(s)−2σ(s) ds dγ , the resolution of unity,∫

dµ (s, γ )|s, γ 〉〈s, γ | = 1̂cont, (14)

is fulfilled. In [4], the resolution of unity is set up independently for the discrete and the
continuous case.

In this paper, we first consider within the Gazeau–Klauder framework a set of coherent
states for the radial Coulomb problem in a curved space of constant positive curvature. Then,
taking the flat-space limit, we obtain a set of coherent states for the continuous part as well as
the discrete portion of the hydrogen spectrum in a unified manner. Although the spectrum of
the Coulomb system in the curved space is wholly discrete, the set of coherent states we derive
in the flat-space limit consists of the discrete and continuous portions. In particular, for the
S-waves, the set coincides with that constructed by Gazeau and Klauder for the hydrogen-like
spectrum [4] if the continuous portion is ignored.

2. The Coulomb problem in a uniformly curved space

Schrödinger [5] was the first to find quantum mechanical solutions for the Coulomb problem
in a curved space of constant positive curvature. He considered this problem as an example
that can be solved by the factorization procedure but is not tractable by other methods (see
also [6]). Soon after, however, Stevenson [7] succeeded in obtaining the solutions by a
conventional manner. Indeed there are various ways to approach the problem. It may be worth
mentioning that the same problem has been solved by the dynamical group approach [8] and
by the path integral approach [9]. It is interesting that the system has only a discrete spectrum
unlike the usual hydrogen atom in flat space and may be seen as a compactified version of
the usual Coulomb problem. It is natural to expect that the discrete spectrum of the system
will generate the entire spectrum of the hydrogen atom including both the continuous and the
discrete portions when the curvature of the space diminishes. We shall explore this limiting
property later. First we wish to construct the coherent states à la Klauder for the radial part of
the Coulomb system.

We assume that space is uniformly curved with a positive curvature K = 1/R2 > 0. Then
the curved space may be realized as a three-dimensional sphere (S3) of radius R imbedded
in a four-dimensional Euclidean space. The line element ds of the space is given in polar
coordinates by

ds2 = dr2

1 − r2/R2
+ r2(dθ2 + sin2 θ dφ2). (15)

Or, with sin χ = r/R(χ ∈ [0, π ]), it can be put in the form,

ds2 = R2 dχ2 + R2 sin2 χ(dθ2 + sin2 θ dφ2). (16)

The Coulomb potential on the sphere [5] is

V (χ) = −Ze2

R
cot χ (17)

which satisfies the harmonic condition [6],
d

dχ

(
sin2 χ

dV

dχ

)
= 0.

The Hamiltonian operator for this Coulomb system with a unit mass is given by

Ĥ = −1

2
̂ − Ze2

R
cot χ, (18)
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where h̄ = 1 and ̂ is the Laplace–Beltrami operator of SO(4). The corresponding Schrödinger
equation may be expressed as[

1

sin2 χ

∂

∂χ

(
sin2 χ

∂

∂χ

)
− L̂2

sin2 χ
+ 2

√
2ωR cot χ + 2R2E

]
ψ(χ, θ, φ) = 0 (19)

where ω = Z2e4/2, and L̂2 is the Casimir invariant of SO(3),

L̂2 = −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (20)

It is obvious that the SO(3) portion can be separated by letting the wavefunction be the product
of the radial function and the spherical harmonics, ψ(χ, θ, φ) ∼ w�(χ)Ym

� (θ, φ). The radial
function w�(χ) obeys

(Ĥ � − E)w�(χ) = 0 = (21)

with the radial Hamiltonian,

Ĥ � = − 1

2R2

[
∂2

∂χ2
+ 2 cot χ

∂

∂χ
− �(� + 1)

sin2 χ
+ 2

√
2ωR cot χ

]
. (22)

From this follows the degenerate energy spectrum [5–7]

EN = N2 − 1

2R2
− ω

N2
, (N = 1, 2, 3, . . .), (23)

and the corresponding eigenfunctions [6, 7, 9]

wN,�(χ) ∼ sin� χ e−iχ(N−�−1+iλn)
2F1(� − N + 1, � + 1 − iλn; 2� + 2; 1 − e2iχ ). (24)

In the above, 2F1(α, β; γ ; z) is Gauss’s hypergeometric function, and

λn = − R

a(n + � + 1)
= − R

aN
, (25)

with a = (2ω)−1/2 = (Ze2)−1.
At this point we note that the present polar coordinate realization of the system, even being

in a curved space, is not degeneracy free. Since an analogue of the Runge–Lentz vector exists
and commutes with the Hamiltonian, the accidental degeneracy persists [10, 11]. Therefore,
we consider only the coherent states associated with the radial wavefunctions. Fixing � we
label the wavefunctions by the radial quantum number n = 0, 1, 2, . . . rather than the principal
quantum number N = n + � + 1 = 1, 2, 3, . . . .

With the radial quantum number n, the energy spectrum (23) and the wavefunctions (24)
may be given, respectively, by

En = (n + �)(n + � + 2)

2R2
− ω

(n + � + 1)2
, (n = 0, 1, 2, . . .), (26)

and

wn,�(χ) = Cn,� sin� χ e−iχ(n+iλn)
2F1(−n, � + 1 − iλn; 2� + 2; 1 − e2iχ ) (27)

with the normalization factor [9]

Cn,� = eiπ(2n+�+1)/2 2�+1

�(2� + 2)

[
i
{
(n + � + 1)2 + λ2

n

}
�(� + 1 + iλn)�(n + 2� + 2)

R3κn�(iλn − �)�(n + 1)

]1/2

(28)
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where

κn = min{|n + � + 1|, |λn|}. (29)

Now we write down the coherent states à la Klauder for the radial Coulomb problem on
the sphere; namely,

|s, γ 〉 = M(s2)

∞∑
n=0

sn e−iγ [n]R
√

[n]R!
|n〉. (30)

Here we note that |n〉 is the nth energy eigenvector so that wn,�(χ) = 〈χ |n〉. Also we have
defined a generalized number [n] by

[n] = (En − E0)/ω (n = 0, 1, 2, . . .). (31)

and [0]! = 1. The subscript R stands for a finite radius R of curvature. For (26), we have

[n]R! =
n∏

m=1

[m]R =
n∏

m=1

[
m(m + 2� + 2)

(m + � + 1)2(� + 1)2

(
1 +

(m + � + 1)2(� + 1)2

2ωR2

)]
(32)

and

M(s2)−2 =
∞∑

n=0

s2n

[n]R!
. (33)

Since [n]R! and hence M(s2) cannot be given in closed form, the coherent states (30) so
constructed for the radial Coulomb problem in curved space are not particularly interesting
until their flat-space limits are taken. Nevertheless, it is obvious that the set of coherent states
given above possess all the properties (i)–(iii) of Klauder’s coherent states [1] plus the action
identity of Gazeau and Klauder [4].

3. The coherent states for the radial Coulomb problem in flat space

Next we consider the flat-space limits where the radius of curvature R tends to infinity. We
conjecture that the Coulomb problem on the sphere with Z = 1 goes over to the hydrogen
atom problem (with me = 1) in the flat-space limit. By doing so, we expect that the discrete
energy spectrum of the Coulomb problem on the sphere will correspond to both the discrete
and the continuous parts of the hydrogen atom spectrum in flat space [9].

Before taking the limit, we introduce the critical number nc for which the energy becomes
zero, that is, Enc

= 0, or

(nc + �)(nc + � + 2)(nc + � + 1)2 = 2ωR2. (34)

Then we separate spectrum (26) into two parts: (a) En < 0 and (b) En � 0, and consider their
limiting cases separately.

Case (a). E < 0 (n < nc). It is apparent from (34) that as R approaches infinity nc goes to
infinity as fast as

√
R. Accordingly the first term of the energy spectrum (26) for n < nc tends

to zero as∣∣∣∣En +
ω

(n + � + 1)2

∣∣∣∣ = (n + �)(n + � + 2)

2mR2
<

(nc + �)(nc + � + 2)

2mR2
∼ 1

R
→ 0. (35)

Since nc → ∞, the energy spectrum bounded above by zero takes the form,

En = − ω

(n + � + 1)2
(n = 0, 1, 2, . . .) (36)

which coincides, as is expected, with the discrete hydrogen atom spectrum.
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Now note that Gauss’s hypergeometric function is reduced to Kummer’s confluent
hypergeometric function by the limiting procedure,

lim
β→∞ 2F1(α, β; γ ; z/β) = 1F1(α; γ ; z)

and that for large |z|
�(z + � + 1)

�(z − l)
∼ z2�+1.

Recalling also that λn = −R/{a(n+�+1)}, we obtain the following limiting values for E < 0:

lim
R→∞ 2F1(−n − 1, � + 1 − iλn; 2� + 2; 1 − e2iχ ) = 1F1(−n − 1; 2� + 2; 2r/a(n + � + 1))

lim
R→∞

exp[−iχ(n + 1 + iλn)] = exp[−r/a(n + � + 1)]

lim
R→∞

sin�χ

[
i
{
(n + � + 1)2 + λ2

n

}
�(� + 1 + iλn)

R3(n + � + 1)�(iλn − �)

]1/2

=
[

ir

a(n + � + 1)

]� [
1

a3(n + � + 1)4

]1/2

.

(37)

Thus, in the flat-space limit, the radial function (24) takes the form,

un,�(r) = Cn

[
2r

a(n + � + 1)

]�

e−r/a(n+�+1)
1F1(−n − 1; 2� + 2; 2r/a(n + � + 1)) (38)

with the normalization constant,

Cn = 1

(2� + 1)!

[(
2

a(n + � + 1)

)3
(n + 2� + 1)!

2(n + � + 1)(n + 1)!

]1/2

. (39)

This result is in fact the normalized hydrogen atom radial wavefunction in units where h̄ = 1.
See, e.g., [12].

Case (b). E � 0 (n � nc). For large R, we approximate n/R for n > nc by dk with a
continuous parameter k > 0, so that by integration

n − nc = kR. (40)

In the limit R → ∞, the energy spectrum behaves as

En = (kR + nc + �)(kR + nc + � + 2)

2R2
− ω

(kR + nc + � + 1)2
→ k2

2
. (41)

As a result, the discrete spectrum (26) for E � 0 turns into a continuous spectrum,

E(k) = k2

2
(0 � k). (42)

In this continuous case, for large R, we must replace λn by −1/ak. In a way similar to
evaluating the discrete limits (37), we calculate the continuous limiting values,

lim
R→∞ 2F1(� − n, � + 1 − iλn; 2� + 2; 1 − e2iχ ) = 1F1(� + 1 + i/ak; 2� + 2; 2ikr)

lim
R→∞

exp[−iχ(n − � + iλn)] = exp[−ikr]

lim
R→∞

sin� χ

[
i

R3

(
(n + 1)2 + λ2

n

)
�(n + � + 2)

|λn|�(n − � + 1)

]1/2

= 2−� eiπ/4√ak2(2kr)�.

(43)
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Using these results, we arrive at the limiting wavefunction belonging to the continuous
spectrum for E � 0,

vk,�(r) =
(

2a

π

)1/2
k2(2kr)�

(2� + 1)!
|�(� + 1 − i/ak)| sinh1/2(π/ak)

× eikr
1 F1(� + 1 + i/ak; 2� + 2; 2ikr). (44)

In this manner, we see that the discrete dynamics of the Coulomb system in curved space leads
to the discrete and continuous regimes of the hydrogen atom in flat space.

Now we consider the flat-space limit of the coherent states (30) for fixed �:

|s, γ 〉 = lim
R→∞

M(s2)


∑

E<0

+
∑
E�0


 sn e−iγ [n]

√
[n]R!

|n〉. (45)

Corresponding to the limiting discrete spectrum (36) for E < 0, we write

lim
R→∞

[n]R = [n] (46)

and have

[n]! =
n∏

m=1

m(m + 2� + 2)

(� + 1)2(m + � + 1)2
= n!

(� + 1)2n

(2� + 3)n

[(� + 2)n]2
, (47)

where (z)n is the Pochhammer symbol,

(z)n = �(z + n)/�(z), (z)0 = 1. (48)

In particular, for the S-wave case (� = 0), this reduces to the result given for the Coulomb-like
spectrum in [4]:

ρn = n + 2

2(n + 1)
. (49)

With (47) the discrete portion of the coherent states becomes

|s, γ 〉disc = N (s2)

∞∑
n=0

sn e−iγ [n]

√
[n]!

|n〉disc, (50)

where

N (s2) = lim
R→∞

M(s2) (51)

which will be evaluated shortly. The discrete eigenstates |n〉 and the radial wavefunctions (38)
with a fixed � are related by un,�(r) = 〈r|n〉. Naturally result (50) for the discrete portion
coincides with Klauder’s coherent state (1) except for the normalization factor.

For the continuous spectrum (41) for E � 0, adopting the weighting function σ(s) = e−s

in (13), we take the limiting value,

lim
R→∞

[n]R! = ρ(ε) =
∫ ∞

0
sε e−s ds = � [ε + 1] = ε!, (52)

where ε = E(k)/ω = k2/(2ω). Note that writing �(ε + 1) formally as ε! in (52) is to stress
that it is a natural continuum limit of [n]!.

Then the continuous portion of the coherent states may be constructed in the form,

|s, γ 〉cont = N (s2)

∫ ∞

0
dε

sε e−iγ ε

√
�(ε + 1)

|ε〉cont, (53)
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expanded with the states |ε〉 satisfying

Ĥ �|ε〉 = ωε|ε〉, 〈ε|ε′〉 = δ(ε − ε′). (54)

The normalization factor N (s2) common to the discrete and continuous portions is given by

N (s2)−2 =
∞∑

n=0

s2n

[n]!
+

∫ ∞

0
dε

s2ε

ε!
, (55)

which can be cast into the form,

N (s2)−2 = 2F1(� + 2, � + 2; 2� + 3; (� + 1)2s2) + ν(s2), (56)

where ν(s) is the ν-function [13] defined by

ν(x) =
∫ ∞

0

xt

�(t + 1)
dt. (57)

Consequently, as the flat-space limit of the coherent states (30) for the Coulomb problem
in curved space, we obtain the coherent states for the radial Coulomb problem consisting of
the discrete and continuous portions:

|s, γ 〉 = N (s2)

[ ∞∑
n=0

sn e−iγ [n]

√
[n]!

|n〉disc +
∫ ∞

0
dε

sε e−iγ ε

√
ε!

|ε〉cont

]
. (58)

In particular, for the S-wave sector (� = 0), we have

|s, γ 〉�=0 = N0(s
2)

[ ∞∑
n=0

sn e−iγ n(n+2)/(n+1)2

√
(n + 2)/(2n + 2)

|n, � = 0〉disc +
∫ ∞

0
dε

sε e−iγ ε

√
ε!

|ε, � = 0〉cont

]
,

(59)

with

N0(s
2)−2 = 2

s2

[
s2

1 − s2
+ ln(1 − s2)

]
+ ν(s2). (60)

The discrete portion of this S-wave limit coincides with the result given by Gazeau and
Klauder [4].

The set of coherent states just obtained in the flat-space limit possesses all the properties
(i)–(iii) posed by Klauder [1]. Naturally the resolution of unity is extended to include both the
discrete and continuous states:∫

|s, γ 〉〈s, γ | dµ (s, γ ) = 1, (61)

with the same measure as that of (6). This relation is not valid when the continuous states are
ignored. In addition, the action identity of Gazeau and Klauder [4] is satisfied:

〈s, γ |Ĥ � − E0|s, γ 〉 = ωJ (62)

with the identification J = s2.

4. Concluding remarks

We have obtained both the discrete and continuous portions of the coherent states for the
radial Coulomb problem in a unified manner. We emphasize that the coherent states for
the discrete spectrum in a uniformly curved space are reducible in the flat-space limit to
those for the continuous spectrum plus those for the discrete spectrum. In the S-wave limit
(� = 0), if the continuous part is ignored, our result (58) coincides with that of Gazeau
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and Klauder [4] for the Coulomb-like discrete spectrum. Although the classical action-angle
interpretation of J = s2 and γ offered by Gazeau and Klauder is natural in (62) for the
harmonic oscillator case, it is questionable that such an interpretation is appropriate for the
Coulomb case. If 〈J, γ |Ĥ |J, γ 〉 corresponds to the classical energy Ecl , then J = Ecl/ω is
the adiabatic invariant for the oscillator (after an appropriate adjustment of its dimension). The
Bohr–Ishiwara–Sommerfeld–Wilson quantization J → n applied to the harmonic oscillator
leads to Ecl → nω, suggesting that the eigenvalues of Ĥ are nω. However, J does not
seem to be an adiabatic invariant for any other systems in a strict sense. The semiclassical
quantization J → n does not yield a correct spectrum for a system other than the harmonic
oscillator. Nonetheless it is interesting to point out that the quantization condition, if modified
as J → [n] (replacing the integer n by the generalized number [n] = en), leads to Ecl → enω,
and is compatible with the action-angle interpretation.
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